ほれTHAADが当たらない理由だ。読んでこい。

According to their analysis, it is estimated that in the case of North Korean Scud B, the THAAD interceptor would have to be launched while the missile is still at an altitude of 60 to 70 km, where the tumbling phenomenon could occur. The spiraling movement could occur at an altitude of 10 to 20 km. In the case of Scud C, if it reenters the atmosphere in a side-on orientation it will likely remain intact until it reaches an altitude of roughly 30 km, where it will break up due to the increase in aerodynamic forces, the two scholars said. If it reenters the atmosphere oriented nose-on relative to its velocity vector, it will disintegrate at about 10 to 12km. Both of these altitudes are below the THAAD minimum intercept altitude, they said.

Secondly, the US missile defense systems including THAAD are limited in their capability to discriminate between the real warheads and decoys. It is because the radars and infrared sensors could tell only the exterior properties of missiles in space such as shape and brightness. Potential enemies could undermine the radars and sensors’ ability to differentiate between the warheads and decoys by conducting countermeasures including cutting a missile into many pieces using explosive cutting cords. The explosive cutting cord, which is a piece of rope manufactured from strands of high explosives, could intentionally cut the missiles into tens of fragments. If the shape of these fragments is similar to the real warheads, it is difficult to determine which one is the real warhead.