論文を仕上げるときに欠かせない計算量の考察
ランダウ表記というのがあるそうですが
計算量算出の根拠とかコツとかについて語り合いましょう
関連スレ
O(n)のソートアルゴリズムを発見した
http://toro.2ch.net/test/read.cgi/tech/1212217022/
参考
http://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%B3%E3%83%80%E3%82%A6%E3%81%AE%E8%A8%98%E5%8F%B7
探検
【O(n)】計算量の評価方法について【O(log n)】
■ このスレッドは過去ログ倉庫に格納されています
2013/03/21(木) 17:35:37.80
2013/03/21(木) 18:28:13.28
計算量について基本的なことなんですが教えてください。
このページに
http://imoz.jp/algorithms/imos_method.html
>記録には O(C) が,シミュレートには O(T) がかかるので,全体としての計算量は O(C+T) となります
と書いてありますが、ループを並べる場合ってO(max(C, T))ではなくてO(C+T)のように足し算してもいいんでしょうか?
このページに
http://imoz.jp/algorithms/imos_method.html
>記録には O(C) が,シミュレートには O(T) がかかるので,全体としての計算量は O(C+T) となります
と書いてありますが、ループを並べる場合ってO(max(C, T))ではなくてO(C+T)のように足し算してもいいんでしょうか?
2013/03/21(木) 19:32:19.42
「データ構造とアルゴリズム総合」のスレでいいじゃん
2013/03/21(木) 20:27:35.02
アイちゃんまだー チンチン
2013/03/21(木) 22:57:18.98
このスレッドは天才チンパンジー「アイちゃん」が
言語訓練のために立てたものです。
アイと研究員とのやり取りに利用するスレッドなので、
関係者以外は書きこまないで下さい。
京都大学霊長類研究所
言語訓練のために立てたものです。
アイと研究員とのやり取りに利用するスレッドなので、
関係者以外は書きこまないで下さい。
京都大学霊長類研究所
2013/03/22(金) 01:45:09.35
O(定数+定数)=O(定数)
全部読んでないけど、この問題に出てくる C は定数の C じゃなくて、お客さんの数らしいんだよね。
で、C も T も入力時に与えられる変数で定数じゃないみたい。
全部読んでないけど、この問題に出てくる C は定数の C じゃなくて、お客さんの数らしいんだよね。
で、C も T も入力時に与えられる変数で定数じゃないみたい。
2013/03/22(金) 01:45:47.23
蟻本見たらループ回数が変数のループを並べる場合の計算量はO(N+M)みたいな足し算になってたよ
そりゃそう書く事に意味があるからね
そりゃそう書く事に意味があるからね
2013/03/22(金) 01:48:26.58
O(C+T)でなくてO(N)でよい
2013/03/22(金) 01:53:06.06
==> [多変数の場合]
関連の無い2つの変数があるなら
それは1つにはまとめられないよ
関連の無い2つの変数があるなら
それは1つにはまとめられないよ
10デフォルトの名無しさん
2013/03/22(金) 02:05:41.98 O(n)をO(log n)に出来るアルゴリズムの変更をしたが、
1要素を処理する為の計算量がm倍に増えた
仮にnが10000の時、
計算量が100倍に増えても
速度的には等価ってことであってる?
1要素を処理する為の計算量がm倍に増えた
仮にnが10000の時、
計算量が100倍に増えても
速度的には等価ってことであってる?
2013/03/22(金) 03:34:16.33
何と何が「等価」なのかを聞きたいの?
2013/03/22(金) 09:17:21.24
O(M+N)でM側が常にゴミ同然ならO(N)でいいだろうが
MとNのどちらが支配的になるかがMとNの大きさによるのであれば
O(M+N)と書くべき
MとNのどちらが支配的になるかがMとNの大きさによるのであれば
O(M+N)と書くべき
2013/03/22(金) 09:18:02.09
グラフ探索で頂点の数がM、辺の数がNの時に探索のオーダーをO(M+N)と表すのが有名な例。
14デフォルトの名無しさん
2013/03/22(金) 09:38:08.05 QuickSort の計算量の求め方が判らないんだけど
誰か解説して
誰か解説して
2013/03/22(金) 09:39:37.84
O(M+N)って例えばO( m^2 + n )や O( m + log(n) )という書き方できるの?
MとNが常に同じ次元なら別々に書く意味はそれ程ないと思うけど、別のものを使えるなら、
分けて書かないと意味が違ってくるような気がする。
MとNが常に同じ次元なら別々に書く意味はそれ程ないと思うけど、別のものを使えるなら、
分けて書かないと意味が違ってくるような気がする。
2013/03/22(金) 10:02:34.23
もちろんできるよ。
2013/03/22(金) 10:45:09.98
>>14
厳密な証明じゃないけど、入力(ソートする配列)のサイズを n として、パーティションのステップで n 、結果としてサイズ n/2 の配列が2つできる。2つのサイズ n/2 の配列に対してそれぞれクイックソートするから、合わせると
T(n) = n + 2T(n/2)
= n + 2{ n/2 + 2T(n/4) } = 2n + 4T(n/4)
= 2n + 4{ n/4 + 2T(n/8) } = 3n + 8T(n/8)
...
// 繰り返すと以下のようなパターンが見えてくる
...
= kn + 2^k * T(n / (2^k)) --------- (*)
になる。
T(n/(2^k)) の n / (2^k) が 1 になるとき、n = 2^k <---> k = log n
k = log n を (*) の式に戻してやると
= kn + 2^k * T(n / (2^k))
= n log n + n * T(1)
= O (n log n)
厳密な証明じゃないけど、入力(ソートする配列)のサイズを n として、パーティションのステップで n 、結果としてサイズ n/2 の配列が2つできる。2つのサイズ n/2 の配列に対してそれぞれクイックソートするから、合わせると
T(n) = n + 2T(n/2)
= n + 2{ n/2 + 2T(n/4) } = 2n + 4T(n/4)
= 2n + 4{ n/4 + 2T(n/8) } = 3n + 8T(n/8)
...
// 繰り返すと以下のようなパターンが見えてくる
...
= kn + 2^k * T(n / (2^k)) --------- (*)
になる。
T(n/(2^k)) の n / (2^k) が 1 になるとき、n = 2^k <---> k = log n
k = log n を (*) の式に戻してやると
= kn + 2^k * T(n / (2^k))
= n log n + n * T(1)
= O (n log n)
2013/03/23(土) 17:00:23.30
>>15
できるとは思うが、大抵次元の低い方がゴミになるんじゃないかな
できるとは思うが、大抵次元の低い方がゴミになるんじゃないかな
2013/03/23(土) 17:55:14.51
>>17
= n log n + n * T(1)
= O (n log n)
じゃなくて
T(n)
= n log n + n * T(1)
↓
O ( T(n) )
= O ( n log n + n * T(1) )
= O (n log n)
ではないのですか?
= n log n + n * T(1)
= O (n log n)
じゃなくて
T(n)
= n log n + n * T(1)
↓
O ( T(n) )
= O ( n log n + n * T(1) )
= O (n log n)
ではないのですか?
2017
2013/03/23(土) 18:55:05.27 O 記法は、ある定数Cがあって、n がある程度大きいときに常に以下の式が成り立つとき
f(n) < C * g(n) ---------- (*)
f(n) = O(g(n)) と表記する。ってのが定義だから、この場合は T(n) = O(n log n) であってる。
最後端折っちゃったけど、つづき
T(n) = n log n + n * T(1)
T(1) は入力サイズにかかわらず一定なので定数 d とする。
T(n) = n log n + d * n
n がある程度大きくなれば常に d < log n なので
T(n) = n log n + d * n < n log n + n log n = 2 n log n
整理すると
T(n) < 2 n log n
O記法に戻って f(n) を T(n)、C を2、g(n) を n log n と対応させると T(n) = O(n log n)
アルゴリズムイントロダクションみたいな有名な本をちょっと見てみるといいよ。
f(n) < C * g(n) ---------- (*)
f(n) = O(g(n)) と表記する。ってのが定義だから、この場合は T(n) = O(n log n) であってる。
最後端折っちゃったけど、つづき
T(n) = n log n + n * T(1)
T(1) は入力サイズにかかわらず一定なので定数 d とする。
T(n) = n log n + d * n
n がある程度大きくなれば常に d < log n なので
T(n) = n log n + d * n < n log n + n log n = 2 n log n
整理すると
T(n) < 2 n log n
O記法に戻って f(n) を T(n)、C を2、g(n) を n log n と対応させると T(n) = O(n log n)
アルゴリズムイントロダクションみたいな有名な本をちょっと見てみるといいよ。
■ このスレッドは過去ログ倉庫に格納されています
ニュース
- 米大統領報道官「日本と強固な同盟維持、中国とも協力」 [少考さん★]
- 高市首相の答弁書に「台湾有事答えない」と明記 存立危機発言当時 ★2 [蚤の市★]
- ミス・ユニバース フィンランド代表の「つり目」写真が波紋… 本人釈明も批判やまず 協会謝罪「徹底的に検証」へ [冬月記者★]
- 【おこめ券】鈴木憲和農相 小泉前農相の備蓄米放出を“反省”「備蓄の円滑な運営を図ってまいります」 [Hitzeschleier★]
- JA全農が「新おこめ券」…来年9月末の有効期限を新設、必要経費のみ上乗せ ★2 [蚤の市★]
- 1人3千円の食品高騰対策、何に使える? あいまいなまま衆院通過 [蚤の市★]
- 【悲報】維新の政治資金でガールズバー、高市首相「良いか悪いかは国民の皆さまが判断されること」 [115996789]
- 【マギレコ】VIPでマギアレコード&マギアエクセドラ【まどドラ】
- 中国人、ガチ超正論。「日本人がアイヌに対してやったことを『問題ない』とするなら、中国が日本人に同じことをしても文句ないだろう?」 [314039747]
- 【悲報】新米、全く売れなくて倉庫が満杯になってしまうwwwwwwwwwwwwwwwwwwww [802034645]
- 衛生的に気持ち悪くて性風俗店行ったこと無いんだ
- いじめられてる男子中学生だけど質問ある?
