lim[x→a]f(x)=0
lim[x→a]g(x)=0
とする。lim[x→a]f(x)/g(x)=0
となるときf(x)はg(x)の高度の無限小といい
f(x)=o(g(x))と書くんだよな。
lim[x→a]f(x)/g(x)が定数になるときO(g(x))とかく。
ちなみに(a_n)がaに収束する列とするときf(a_n)/g(a_n)については条件を満たさなくていいし
上極限をΩ(g(x))下極限をO(g(x))と定義してO(g(x))をΘ(g(x))で定義する場合もあるんだよな。
もちろんlim[x→a]f(x)/g(x)が収束すればΘ(g(x))=O(g(x))だけどな。