ランダムフォレストは不純度の減少に関係ある特徴量を重要度でピックアップしてくれるだけだから
故障の原因を調べるなら、むしろ関係のない特徴量を削ったり、選択したりする方に
機械学習を使うべきだと思うんだ
ロジスティック回帰とか、KNNにSBSを適用するとか
いきなりランダムフォレストでがばっとやってるなら雑過ぎると思う

あと装置について何も知らないなら
分析結果を提出して仕事完了以外に何も出来ない気がするんだけど