プログラミングのお題スレです。
【出題と回答例】
1 名前:デフォルトの名無しさん
お題:お題本文
2 名前:デフォルトの名無しさん
>>1 使用言語
回答本文
結果がある場合はそれも
【ソースコードが長くなったら】 (オンラインでコードを実行できる)
https://ideone.com/
http://codepad.org/
http://compileonline.com/
http://rextester.com/runcode
https://runnable.com/
https://code.hackerearth.com/
http://melpon.org/wandbox
https://paiza.io/
宿題は宿題スレがあるのでそちらへ。
※前スレ
プログラミングのお題スレ Part21
https://mevius.5ch.net/test/read.cgi/tech/1668333636/
探検
プログラミングのお題スレ Part22
1デフォルトの名無しさん
2023/08/03(木) 13:52:13.20ID:/xW45k0z244デフォルトの名無しさん
2024/02/16(金) 21:57:03.19ID:cLyPSkE524517
2024/02/16(金) 23:58:17.22ID:C4FuIAno >>234
Kotlin
何か画期的なアルゴリズムを使ったわけではなく、むしろほとんど何も考えずただ作られただけのプログラム。
https://paiza.io/projects/S5qsLnHz_pZD3um9jYRg_Q
Kotlin
何か画期的なアルゴリズムを使ったわけではなく、むしろほとんど何も考えずただ作られただけのプログラム。
https://paiza.io/projects/S5qsLnHz_pZD3um9jYRg_Q
2469
2024/02/17(土) 02:10:36.54ID:K8P5qDCx >>234 Python3
def f(k):
s = str(k)
return s == s[::-1]
for n in [0, 17, 100, 123459321]:
l = set()
for i in range(n + 1):
if f(n - i): l.add(n - i)
if f(n + i): l.add(n + i)
if l:
print(n, l)
break
※見易くするためインデントは全角空白に置換してあります
実行結果
$ python3 22_234_palindromic_number..py
0 {0}
17 {22}
100 {99, 101}
123459321 {123454321, 123464321}
def f(k):
s = str(k)
return s == s[::-1]
for n in [0, 17, 100, 123459321]:
l = set()
for i in range(n + 1):
if f(n - i): l.add(n - i)
if f(n + i): l.add(n + i)
if l:
print(n, l)
break
※見易くするためインデントは全角空白に置換してあります
実行結果
$ python3 22_234_palindromic_number..py
0 {0}
17 {22}
100 {99, 101}
123459321 {123454321, 123464321}
247デフォルトの名無しさん
2024/02/17(土) 18:14:20.87ID:nUY+CX2J248デフォルトの名無しさん
2024/02/17(土) 19:03:53.65ID:eWGoJOTY249デフォルトの名無しさん
2024/02/17(土) 20:00:17.98ID:k6cg1rdP250デフォルトの名無しさん
2024/02/17(土) 20:51:00.88ID:nUY+CX2J251デフォルトの名無しさん
2024/02/17(土) 21:45:58.19ID:nUY+CX2J252デフォルトの名無しさん
2024/02/18(日) 17:05:41.93ID:z028saCP253デフォルトの名無しさん
2024/02/18(日) 18:14:23.24ID:puttXdr1254デフォルトの名無しさん
2024/02/18(日) 18:14:51.62ID:puttXdr1255デフォルトの名無しさん
2024/02/18(日) 18:15:27.81ID:puttXdr1256デフォルトの名無しさん
2024/02/18(日) 18:16:03.57ID:puttXdr1257デフォルトの名無しさん
2024/02/18(日) 18:26:09.28ID:ovKjFpQ6 >>253-256 アスペで不合格w
258デフォルトの名無しさん
2024/02/18(日) 18:34:19.30ID:rWy6ZYAH >>234 ruby
https://ideone.com/N0w91j
f = -> n {
(0..n).lazy.map {|i| [n - i, n + i].select {|x| x.to_s.reverse.to_i == x}}.find(&:any?).uniq
}
>>252
(`・ω・´)ゞ
誤:a - 1, a + 1
正:a - 1, b + 1
https://ideone.com/N0w91j
f = -> n {
(0..n).lazy.map {|i| [n - i, n + i].select {|x| x.to_s.reverse.to_i == x}}.find(&:any?).uniq
}
>>252
(`・ω・´)ゞ
誤:a - 1, a + 1
正:a - 1, b + 1
259デフォルトの名無しさん
2024/02/18(日) 19:41:35.69ID:rWy6ZYAH >>234 dart
https://ideone.com/e23wRv
void main() {
var rev = (n) => int.parse(n.toString().split('').reversed.join());
var f = (n) => Iterable.generate(n + 1).map((i) => [n - i, n + i].where((x) => x == rev(x))).firstWhere((a) => a.isNotEmpty).toSet().toList();
print([0, 17, 100].map((n) => [n, f(n)]));
}
https://ideone.com/e23wRv
void main() {
var rev = (n) => int.parse(n.toString().split('').reversed.join());
var f = (n) => Iterable.generate(n + 1).map((i) => [n - i, n + i].where((x) => x == rev(x))).firstWhere((a) => a.isNotEmpty).toSet().toList();
print([0, 17, 100].map((n) => [n, f(n)]));
}
260デフォルトの名無しさん
2024/02/20(火) 08:46:37.56ID:8US2zplP26117
2024/02/20(火) 10:47:13.25ID:YmH8jdAc >>254
しらみ潰しって、どんなテストしたの?
しらみ潰しって、どんなテストしたの?
262デフォルトの名無しさん
2024/02/20(火) 12:59:46.62ID:qzcGLGiS しらみ潰しとは例えば1から順番に見つかるまで全てを試していく最悪な方法を指す
今回の場合だと与えた数から順番に見つかるまで±1を続けて全てを試していって探すプログラムが該当する
今回の場合だと与えた数から順番に見つかるまで±1を続けて全てを試していって探すプログラムが該当する
2639
2024/02/20(火) 17:18:07.59ID:X5uoFLgg 「どんなテストしたの?」
って質問だよ
って質問だよ
265デフォルトの名無しさん
2024/02/20(火) 22:00:55.76ID:e+y9lgSN266デフォルトの名無しさん
2024/02/21(水) 13:54:29.89ID:ve9Dz9D8 >>264
私は解答は提出していないが、ざっくりと自分が思いついた方法
まず、以下のような操作を考える
A. 1234という入力に対して1234321を返す
B. 1234という入力に対して12344321を返す
ここで、xという入力に対してA,Bが返す数をA(x),B(x)と表すことにする
次に、与えられた数の桁数で場合分け
(1)与えられた数字の桁数が奇数の場合
例として5桁の数字を考える
N=a*10000+b*1000+c*100+d*10+e*1 (a~eは1桁の自然数, aは0でない)
が与えられたとき、
M=a*100+b*10+c*1
とすると、N=10000の場合を除いて、Nに最も近い回文数は
A(M), A(M+1), A(M-1)
の3つの候補に絞られる(厳密にはA(M)とNとの大小比較からA(M±1)の何れかは明らかに候補にならないので2つを考えれば良い)
N=10000の場合は9999と10001が答え
(2)与えられた数の桁数が偶数の場合
例として6桁の数を考える
(1)と同様に
N=a*100000+b*10000+c*1000+d*100+e*10+f*1
に対して
M=a*100+b*10+c*1
とすると、N=100000の場合を除いて
B(M), B(M+1), B(M-1)
のどれかがNに最も近い回文数(厳密には以下略)
N=100000の場合は99999と100001が答え
十分大きな数に対しては虱潰しに回文判定していくより速く求まる
私は解答は提出していないが、ざっくりと自分が思いついた方法
まず、以下のような操作を考える
A. 1234という入力に対して1234321を返す
B. 1234という入力に対して12344321を返す
ここで、xという入力に対してA,Bが返す数をA(x),B(x)と表すことにする
次に、与えられた数の桁数で場合分け
(1)与えられた数字の桁数が奇数の場合
例として5桁の数字を考える
N=a*10000+b*1000+c*100+d*10+e*1 (a~eは1桁の自然数, aは0でない)
が与えられたとき、
M=a*100+b*10+c*1
とすると、N=10000の場合を除いて、Nに最も近い回文数は
A(M), A(M+1), A(M-1)
の3つの候補に絞られる(厳密にはA(M)とNとの大小比較からA(M±1)の何れかは明らかに候補にならないので2つを考えれば良い)
N=10000の場合は9999と10001が答え
(2)与えられた数の桁数が偶数の場合
例として6桁の数を考える
(1)と同様に
N=a*100000+b*10000+c*1000+d*100+e*10+f*1
に対して
M=a*100+b*10+c*1
とすると、N=100000の場合を除いて
B(M), B(M+1), B(M-1)
のどれかがNに最も近い回文数(厳密には以下略)
N=100000の場合は99999と100001が答え
十分大きな数に対しては虱潰しに回文判定していくより速く求まる
267デフォルトの名無しさん
2024/02/21(水) 16:02:55.06ID:Sko4Sglv268259
2024/02/21(水) 23:06:20.13ID:DX/jvS2m269デフォルトの名無しさん
2024/02/21(水) 23:42:23.78ID:bqTl0uQM >>234
>>249をC++で書き換え(入力値は64ビット整数の範囲内限定)
https://ideone.com/e1AM8A
元々はCで書き、4行目はなし、15行目と24行目はstrrev(s + i);だったが、Windowsのgccでは
コンパイルできたのにideoneではできなかったので、仕方なくC++にしてstd::reverseで代用した。
>>249をC++で書き換え(入力値は64ビット整数の範囲内限定)
https://ideone.com/e1AM8A
元々はCで書き、4行目はなし、15行目と24行目はstrrev(s + i);だったが、Windowsのgccでは
コンパイルできたのにideoneではできなかったので、仕方なくC++にしてstd::reverseで代用した。
270デフォルトの名無しさん
2024/02/22(木) 00:34:50.13ID:+mJgzEZf271デフォルトの名無しさん
2024/02/22(木) 01:30:35.61ID:9s07Ijs0 >>234
Rust
fn nearest_palindrome_numbers(n: usize) -> Vec<usize> {
let mut dd = DecimalDigits::new(n);
dd.palindrome_using_upper_half();
let n1 = dd.to_number();
match compare(n, n1) {
Equal => return vec![n],
Greater => dd.increment_upper_half(),
Less => dd.decrement_upper_half(),
}
if dd.is_most_upper_zero() {
return vec![n - 1, n + 1];
}
dd.palindrome_using_upper_half();
let n2 = dd.to_number();
match compare_absolute_diff((n, n1), (n, n2)) {
Less => return vec![n1],
Greater => return vec![n2],
Equal => return if n1 < n2 { vec![n1, n2] } else { vec![n2, n1] },
}
}
Rust
fn nearest_palindrome_numbers(n: usize) -> Vec<usize> {
let mut dd = DecimalDigits::new(n);
dd.palindrome_using_upper_half();
let n1 = dd.to_number();
match compare(n, n1) {
Equal => return vec![n],
Greater => dd.increment_upper_half(),
Less => dd.decrement_upper_half(),
}
if dd.is_most_upper_zero() {
return vec![n - 1, n + 1];
}
dd.palindrome_using_upper_half();
let n2 = dd.to_number();
match compare_absolute_diff((n, n1), (n, n2)) {
Less => return vec![n1],
Greater => return vec![n2],
Equal => return if n1 < n2 { vec![n1, n2] } else { vec![n2, n1] },
}
}
272266
2024/02/22(木) 01:47:44.56ID:c61GBvnr >>267
N=17=1*10+7*1のとき、Nは2桁(偶数桁)でM=1*1=1
B(M)=B(1)=11はNより小さいのでB(M-1)は考えなくてよい
B(M+1)=B(2)=22なので11,22が答えの候補
11より22のほうが17に近いので22が答え
ちょっとNに対するMの説明が足りてなかったけど言葉で上手く言い表せないすみません(上位半分以上かつ最小の桁数を抜き出す、的な)
N=17=1*10+7*1のとき、Nは2桁(偶数桁)でM=1*1=1
B(M)=B(1)=11はNより小さいのでB(M-1)は考えなくてよい
B(M+1)=B(2)=22なので11,22が答えの候補
11より22のほうが17に近いので22が答え
ちょっとNに対するMの説明が足りてなかったけど言葉で上手く言い表せないすみません(上位半分以上かつ最小の桁数を抜き出す、的な)
273デフォルトの名無しさん
2024/02/22(木) 20:54:45.16ID:+nyM4OV5274デフォルトの名無しさん
2024/02/22(木) 21:04:16.48ID:3p8Kt6H4275273
2024/02/22(木) 21:48:36.22ID:+nyM4OV5 >>273
> [1000, [1001]]
誤:ps = [p.(s), p.(t.to_i.pred.abs.to_s + u), p.(t.succ + u)]
正:ps = [p.(s), p.(t.to_i.pred.abs.to_s + u), p.(t.succ + u), p.(s.to_i.pred.abs.to_s)]
とりあえず雑に修正してみたが?
(ノ∀`)アチャー
> [1000, [1001]]
誤:ps = [p.(s), p.(t.to_i.pred.abs.to_s + u), p.(t.succ + u)]
正:ps = [p.(s), p.(t.to_i.pred.abs.to_s + u), p.(t.succ + u), p.(s.to_i.pred.abs.to_s)]
とりあえず雑に修正してみたが?
(ノ∀`)アチャー
27617
2024/02/23(金) 18:10:28.85ID:ZR6D6MGM277デフォルトの名無しさん
2024/02/23(金) 18:58:34.05ID:9Umf93zL278デフォルトの名無しさん
2024/02/23(金) 21:39:34.55ID:ZR6D6MGM >>277
あー。プログラムにバグがあってまともに答えが出ないっていうことではなく何の捻りもないプログラムだからダメっていう感想ね。それならわかる。
こちらもアルゴリズム思い浮かばないけどとりあえず作ってみただけだし。ダメというほどではないが良いとも思えないプログラムなので。
あー。プログラムにバグがあってまともに答えが出ないっていうことではなく何の捻りもないプログラムだからダメっていう感想ね。それならわかる。
こちらもアルゴリズム思い浮かばないけどとりあえず作ってみただけだし。ダメというほどではないが良いとも思えないプログラムなので。
279273
2024/02/23(金) 23:06:54.56ID:RzwC5Hr4 >>234 ruby
https://ideone.com/E9VSE3
・273の[1000, [1001]]バグ修正版
・275とは違う方法で修正してみたがやっつけ感大
>>234 ruby 2.5.5
https://ideone.com/1zqSr1
・いわゆる(?)ジェネレータ版
・「終端を持たない範囲オブジェクト」はRuby 2.6.0から
https://ideone.com/E9VSE3
・273の[1000, [1001]]バグ修正版
・275とは違う方法で修正してみたがやっつけ感大
>>234 ruby 2.5.5
https://ideone.com/1zqSr1
・いわゆる(?)ジェネレータ版
・「終端を持たない範囲オブジェクト」はRuby 2.6.0から
280デフォルトの名無しさん
2024/02/24(土) 00:25:03.27ID:f2xn4abB281279
2024/02/24(土) 13:21:16.94ID:aSUCvHSH 異なる自然数 a, b (a > b) における a^3 - b^3 を「a, b の三乗差」と呼ぶことにする。
異なる5通りの組(a, b) (c, d) ... (j, k) について三乗差がすべて相等しいとき
その組(a, b)...(j, k) および三乗差自体を求めよ
異なる6通りの組で三乗差が相等しい場合があるかも検討せよ
異なる5通りの組(a, b) (c, d) ... (j, k) について三乗差がすべて相等しいとき
その組(a, b)...(j, k) および三乗差自体を求めよ
異なる6通りの組で三乗差が相等しい場合があるかも検討せよ
283デフォルトの名無しさん
2024/02/24(土) 16:47:38.19ID:KRWvIUHe28417
2024/02/24(土) 16:52:08.36ID:Pf8MFN4C 数学、か・・・
285デフォルトの名無しさん
2024/02/24(土) 18:16:29.01ID:O6Cw1j13286デフォルトの名無しさん
2024/02/24(土) 20:03:55.52ID:mNVJyIZh287デフォルトの名無しさん
2024/02/24(土) 22:30:55.28ID:mNVJyIZh >>282
aが5000以下限定で>>283の解はRで5秒以内に求められた。8〜9行目は下三角行列の要素番号から
行番号と列番号を求めているだけで、>>282を解く特別なアルゴリズムというわけではない。
https://ideone.com/w4X3DC
aが5000以下限定で>>283の解はRで5秒以内に求められた。8〜9行目は下三角行列の要素番号から
行番号と列番号を求めているだけで、>>282を解く特別なアルゴリズムというわけではない。
https://ideone.com/w4X3DC
288285
2024/02/25(日) 08:52:58.18ID:M1xmyD2F289デフォルトの名無しさん
2024/02/25(日) 21:06:57.77ID:CUQUyFSy >>282
>>287は下三角行列の要素番号から列番号を求めるのに2次方程式を解くのが分かりにくかったから、
各列の最下行の要素番号を計算しておいてそれを二分探索するように変更した。
https://ideone.com/Tefgkh
n = 25000で実行してみても、n = 5000ときの解のa, bを両方とも2, 3, 4, 5倍した解しか別に
見つからなかった。
>>287は下三角行列の要素番号から列番号を求めるのに2次方程式を解くのが分かりにくかったから、
各列の最下行の要素番号を計算しておいてそれを二分探索するように変更した。
https://ideone.com/Tefgkh
n = 25000で実行してみても、n = 5000ときの解のa, bを両方とも2, 3, 4, 5倍した解しか別に
見つからなかった。
290デフォルトの名無しさん
2024/02/26(月) 22:18:39.21ID:CjcYgBx5 >>282
>>289と似た手順でC++
https://ideone.com/nFRsrK
Rではソートする前に重複値だけを抽出しているが、C++のunique関数はソート済みデータにしか
使えないので使っていない。
>>289と似た手順でC++
https://ideone.com/nFRsrK
Rではソートする前に重複値だけを抽出しているが、C++のunique関数はソート済みデータにしか
使えないので使っていない。
291288
2024/02/27(火) 21:45:30.42ID:nu8aoj+0292デフォルトの名無しさん
2024/02/27(火) 22:30:42.88ID:BJV11H6M >>282
下三角行列の各列内の要素は昇順で既に並んでいるのに、>>290は下三角行列の全要素を
ソートして無駄なので、列のマージに変更(要するにマージソートを途中段階から開始)
したら少し速くなった。
https://ideone.com/EZSvB3
n = 10000でも5秒以内に終わった。
https://ideone.com/huQiBe
下三角行列の各列内の要素は昇順で既に並んでいるのに、>>290は下三角行列の全要素を
ソートして無駄なので、列のマージに変更(要するにマージソートを途中段階から開始)
したら少し速くなった。
https://ideone.com/EZSvB3
n = 10000でも5秒以内に終わった。
https://ideone.com/huQiBe
293288
2024/02/28(水) 22:00:05.18ID:7ZY4TL6q294デフォルトの名無しさん
2024/02/28(水) 23:21:09.16ID:FCtvUtiC >>282
>>292とは別の方法で>>290を高速化
https://ideone.com/QxjmyT
1³, 2³, 3³, …, 5000³をD = 5001で割った余りはすべて異なる値になるから、d = a³ − b³を
Dで割った余りはどれか1つの値に偏ることなく均等に分布する。dをDで割った余りによりdを
区分すれば、各区分に入る個数はどれも多すぎないのでソートに時間が余りかからない。
Dの値はconstexpr関数によりコンパイラに計算させている。n = 10000, 15000のときは
それぞれD = 10002, 15009になる。
>>292とは別の方法で>>290を高速化
https://ideone.com/QxjmyT
1³, 2³, 3³, …, 5000³をD = 5001で割った余りはすべて異なる値になるから、d = a³ − b³を
Dで割った余りはどれか1つの値に偏ることなく均等に分布する。dをDで割った余りによりdを
区分すれば、各区分に入る個数はどれも多すぎないのでソートに時間が余りかからない。
Dの値はconstexpr関数によりコンパイラに計算させている。n = 10000, 15000のときは
それぞれD = 10002, 15009になる。
295291
2024/02/29(木) 22:20:45.85ID:HlaTo1dC >>282 c
https://ideone.com/JnJpJW
・291から省メモリ化
旧:unsigned int values[10];
新:unsinged short values[4];
https://ideone.com/JnJpJW
・291から省メモリ化
旧:unsigned int values[10];
新:unsinged short values[4];
296デフォルトの名無しさん
2024/03/01(金) 22:22:26.10ID:6k2oCbjk >>282
C++
https://ideone.com/1c4s5I
>>294はa, bの二重ループ内でa³ − b³をD = 5001で割った余りrにより区分していたが、
rのループ内でa, bを変化させるように変更したら、2次元配列がなくなってすっきりした。
その結果、メモリ使用量が激減し、nが大きい場合でも実行できるようになった。
C++
https://ideone.com/1c4s5I
>>294はa, bの二重ループ内でa³ − b³をD = 5001で割った余りrにより区分していたが、
rのループ内でa, bを変化させるように変更したら、2次元配列がなくなってすっきりした。
その結果、メモリ使用量が激減し、nが大きい場合でも実行できるようになった。
297デフォルトの名無しさん
2024/03/01(金) 22:23:18.03ID:6k2oCbjk >>296の続き
n = 1000000, m = 6で実行すると、12通りの解が見つかった。
[6つ組解]
424910390480793: (75978, 23919), (77385, 33768), (83482, 53935), (141705, 134268), (317982, 316575), (596001, 595602)
620174235433536: (86184, 27132), (87780, 38304), (90237, 48573), (94696, 61180), (160740, 152304), (360696, 359100)
1238805803151000: (107487, 14487), (108540, 34170), (110550, 48240), (119260, 77050), (454260, 452250), (851430, 850860)
1384074844012224: (112152, 29844), (125324, 83600), (130050, 93426), (159372, 138624), (224928, 215412), (357447, 353799)
1936290882196125: (127629, 52254), (133320, 75675), (149285, 111620), (228525, 215430), (246510, 235395), (290214, 282339)
4589726535576000: (170172, 69672), (177760, 100900), (185265, 120945), (304700, 287240), (328680, 313860), (386952, 376452)
4961393883468288: (172368, 54264), (175560, 76608), (180474, 97146), (189392, 122360), (321480, 304608), (721392, 718200)
11072598752097792: (224304, 59688), (250648, 167200), (260100, 186852), (318744, 277248), (449856, 430824), (714894, 707598)
36717812284608000: (340344, 139344), (355520, 201800), (370530, 241890), (609400, 574480), (657360, 627720), (773904, 752904)
52279853819295375: (382887, 156762), (399960, 227025), (447855, 334860), (685575, 646290), (739530, 706185), (870642, 847017)
[7つ組解]
15490327057569000: (249281, 6281), (255258, 104508), (266640, 151350), (298570, 223240), (457050, 430860), (493020, 470790), (580428, 564678)
123922616460552000: (498562, 12562), (510516, 209016), (533280, 302700), (555795, 362835), (597140, 446480), (914100, 861720), (986040, 941580)
6つ組解の(2, 7), (4, 8), (5, 10), (6, 9)番目は各括弧内で自然数比になっている。
6つ組解の5番目の2倍は7つ組解の1番目のうちの6組を構成している。
n = 1000000, m = 6で実行すると、12通りの解が見つかった。
[6つ組解]
424910390480793: (75978, 23919), (77385, 33768), (83482, 53935), (141705, 134268), (317982, 316575), (596001, 595602)
620174235433536: (86184, 27132), (87780, 38304), (90237, 48573), (94696, 61180), (160740, 152304), (360696, 359100)
1238805803151000: (107487, 14487), (108540, 34170), (110550, 48240), (119260, 77050), (454260, 452250), (851430, 850860)
1384074844012224: (112152, 29844), (125324, 83600), (130050, 93426), (159372, 138624), (224928, 215412), (357447, 353799)
1936290882196125: (127629, 52254), (133320, 75675), (149285, 111620), (228525, 215430), (246510, 235395), (290214, 282339)
4589726535576000: (170172, 69672), (177760, 100900), (185265, 120945), (304700, 287240), (328680, 313860), (386952, 376452)
4961393883468288: (172368, 54264), (175560, 76608), (180474, 97146), (189392, 122360), (321480, 304608), (721392, 718200)
11072598752097792: (224304, 59688), (250648, 167200), (260100, 186852), (318744, 277248), (449856, 430824), (714894, 707598)
36717812284608000: (340344, 139344), (355520, 201800), (370530, 241890), (609400, 574480), (657360, 627720), (773904, 752904)
52279853819295375: (382887, 156762), (399960, 227025), (447855, 334860), (685575, 646290), (739530, 706185), (870642, 847017)
[7つ組解]
15490327057569000: (249281, 6281), (255258, 104508), (266640, 151350), (298570, 223240), (457050, 430860), (493020, 470790), (580428, 564678)
123922616460552000: (498562, 12562), (510516, 209016), (533280, 302700), (555795, 362835), (597140, 446480), (914100, 861720), (986040, 941580)
6つ組解の(2, 7), (4, 8), (5, 10), (6, 9)番目は各括弧内で自然数比になっている。
6つ組解の5番目の2倍は7つ組解の1番目のうちの6組を構成している。
298デフォルトの名無しさん
2024/03/01(金) 22:24:42.81ID:6k2oCbjk >>282
C++
https://ideone.com/tM1cuo
>>296のrのループ内でa³ − b³をD2 = 5003で割った余りr2により区分し、それぞれの区分ごとに
解を探すようにしたら速くなった。ただし、nが大きい場合にはかえって遅くなる。
C++
https://ideone.com/tM1cuo
>>296のrのループ内でa³ − b³をD2 = 5003で割った余りr2により区分し、それぞれの区分ごとに
解を探すようにしたら速くなった。ただし、nが大きい場合にはかえって遅くなる。
299◆QZaw55cn4c
2024/03/03(日) 19:08:39.58ID:75HCbpT6300デフォルトの名無しさん
2024/03/03(日) 22:19:54.92ID:ZEDvt9uH301デフォルトの名無しさん
2024/03/06(水) 22:35:52.23ID:lIZep5aT >>282
C++
https://ideone.com/PG6UiY
>>300の実行時間を分析すると、最も時間が掛かっているのは46〜と47行目だと判明した。
そこで配列ABの第1次元と第2次元を入れ替えてみると、n = 5000では変わらないが、
1万, 2万, 5万, 10万, 20万では35%前後高速になった。これは、改良前には第2次元の添字が
小さい要素に書き込みが集中しているため、改良後のように第1次元に入れ替えた方が
纏まったメモリ領域に書き込みが集中しキャッシュの効きが良くなるからだと考えられる。
一方、n = 100万で高速化しないのは、書き込み集中領域が大きすぎるからだろう。
https://ideone.com/6RzW0n
n = 100万の場合にはr2の値によってデータを多数の列へ振り分けるのをやめ、列を1つにして、
その内部でr2の値により2種類に区分し、それぞれの内部で2種類にさらに区分し、…と再帰的に
区分していけば(要するにクイックソートの変形版)、1つの配列内での要素のスワップだけで済み、
キャッシュの効きが改善されるとの予想通り、n = 100万で実行速度は>>296より25%速くなった。
(原理的には>>300より非効率なのでn = 5000では>>300より当然遅い)
C++
https://ideone.com/PG6UiY
>>300の実行時間を分析すると、最も時間が掛かっているのは46〜と47行目だと判明した。
そこで配列ABの第1次元と第2次元を入れ替えてみると、n = 5000では変わらないが、
1万, 2万, 5万, 10万, 20万では35%前後高速になった。これは、改良前には第2次元の添字が
小さい要素に書き込みが集中しているため、改良後のように第1次元に入れ替えた方が
纏まったメモリ領域に書き込みが集中しキャッシュの効きが良くなるからだと考えられる。
一方、n = 100万で高速化しないのは、書き込み集中領域が大きすぎるからだろう。
https://ideone.com/6RzW0n
n = 100万の場合にはr2の値によってデータを多数の列へ振り分けるのをやめ、列を1つにして、
その内部でr2の値により2種類に区分し、それぞれの内部で2種類にさらに区分し、…と再帰的に
区分していけば(要するにクイックソートの変形版)、1つの配列内での要素のスワップだけで済み、
キャッシュの効きが改善されるとの予想通り、n = 100万で実行速度は>>296より25%速くなった。
(原理的には>>300より非効率なのでn = 5000では>>300より当然遅い)
302デフォルトの名無しさん
2024/03/08(金) 19:02:53.21ID:oHHhAfhn >>301
ハズレが多いから2passは効果ある?
ハズレが多いから2passは効果ある?
303デフォルトの名無しさん
2024/03/09(土) 22:13:47.64ID:C74EWG6S >>282
C++
https://ideone.com/xQD1W8
関数mainのループで配列A, B, Pに書き込まずdにだけ書き込むようにし、関数FindDuplicatesで
dの添字Pではなくdそのものをソートするように変えて、n = 1000000の場合に>>301より10%高速化。
関数PrintSolutionでa, bをmainでと同じ方法で再計算するのは非効率だが、PrintSolutionは僅か12回しか
呼ばれないため、全体の実行時間への影響は無視できる。
C++
https://ideone.com/xQD1W8
関数mainのループで配列A, B, Pに書き込まずdにだけ書き込むようにし、関数FindDuplicatesで
dの添字Pではなくdそのものをソートするように変えて、n = 1000000の場合に>>301より10%高速化。
関数PrintSolutionでa, bをmainでと同じ方法で再計算するのは非効率だが、PrintSolutionは僅か12回しか
呼ばれないため、全体の実行時間への影響は無視できる。
304デフォルトの名無しさん
2024/03/09(土) 22:47:01.30ID:v99WCN19 お題
460円 580円 600円 の3種類の商品があります
これらを組み合わせて合計10個買ったら5360円になりました
組み合わせを求めるプログラムを書いてください
ちなみに答えの一つは
・600円×2
・580円×4
・460円×4
だそうです
https://rio2016.5ch.net/test/read.cgi/cigaret/1706726196/56-57
460円 580円 600円 の3種類の商品があります
これらを組み合わせて合計10個買ったら5360円になりました
組み合わせを求めるプログラムを書いてください
ちなみに答えの一つは
・600円×2
・580円×4
・460円×4
だそうです
https://rio2016.5ch.net/test/read.cgi/cigaret/1706726196/56-57
305デフォルトの名無しさん
2024/03/09(土) 23:59:51.39ID:C74EWG6S306デフォルトの名無しさん
2024/03/10(日) 01:20:18.65ID:8NU5B5F+ >>304
面倒なので全て460円を引くと
A=0円 B=120円 C=140円
10個で760円という問題
面倒なのでさらに20で割ると
A=0円 B=6 C=7円
10個で38円という問題
つまり唯一奇数のCは偶数個が確定
Cが6個以上だと42円以上でオーバーしてNG
Cが4個だと28円で残り10円をA,Bで作れないからNG
Cが2個だと14円で残り24円はBが4個で残り4個がA
Cが0個だと0円で残り38円をA,Bで作れないからNG
つまり解は(A,B,C)=(4,4,2)しかない
面倒なので全て460円を引くと
A=0円 B=120円 C=140円
10個で760円という問題
面倒なのでさらに20で割ると
A=0円 B=6 C=7円
10個で38円という問題
つまり唯一奇数のCは偶数個が確定
Cが6個以上だと42円以上でオーバーしてNG
Cが4個だと28円で残り10円をA,Bで作れないからNG
Cが2個だと14円で残り24円はBが4個で残り4個がA
Cが0個だと0円で残り38円をA,Bで作れないからNG
つまり解は(A,B,C)=(4,4,2)しかない
307デフォルトの名無しさん
2024/03/10(日) 11:20:30.42ID:Doj9A/yB >>306
すごすぎるだろ、日本の未来を頼む
すごすぎるだろ、日本の未来を頼む
308デフォルトの名無しさん
2024/03/10(日) 19:06:13.20ID:qBLPZ6x8309デフォルトの名無しさん
2024/03/10(日) 20:08:55.20ID:6qxPF4Wx 2pass案は多少工夫したらかなり速い
n ␣␣m ␣296␣ ␣301-1 ␣301-2 ␣303␣ ␣2pass
5k␣␣5 ␣ 0.5s ␣ 0.1s ␣ 0.5s ␣ 0.4s ␣ 0.1s
25k ␣5 ␣12.7s ␣ 2.5s ␣13.9s ␣11.1s ␣ 1.7s
100k␣5 ␣3m52s ␣49.3s ␣4m13s ␣3m26s ␣38.9s
1M* ␣6 ␣8h23m ␣2h50m ␣8h51m ␣6h43m ␣1h11m
*n=100万は1万サンプルの部分ループ500k≦r<510kから100倍
>>301の296と301-2の比較記述と違う傾向があるのはキャッシュ階層の違いだと思う
2passは301-1に近いけど1pass目でのランダムアクセスサイズを落としながらも
誤判定率を低く抑える(0.2%~2%)工夫をするのがお楽しみだと思う
n ␣␣m ␣296␣ ␣301-1 ␣301-2 ␣303␣ ␣2pass
5k␣␣5 ␣ 0.5s ␣ 0.1s ␣ 0.5s ␣ 0.4s ␣ 0.1s
25k ␣5 ␣12.7s ␣ 2.5s ␣13.9s ␣11.1s ␣ 1.7s
100k␣5 ␣3m52s ␣49.3s ␣4m13s ␣3m26s ␣38.9s
1M* ␣6 ␣8h23m ␣2h50m ␣8h51m ␣6h43m ␣1h11m
*n=100万は1万サンプルの部分ループ500k≦r<510kから100倍
>>301の296と301-2の比較記述と違う傾向があるのはキャッシュ階層の違いだと思う
2passは301-1に近いけど1pass目でのランダムアクセスサイズを落としながらも
誤判定率を低く抑える(0.2%~2%)工夫をするのがお楽しみだと思う
310デフォルトの名無しさん
2024/03/14(木) 14:43:15.33ID:ZraPd1+Q t
311デフォルトの名無しさん
2024/03/27(水) 23:42:08.75ID:sRZ89+IF >>304
a = (600, 580, 460)
m = min(a)
h = set()
def buy(b, yen):
if yen < m: return
for i in range(0, len(a)):
v = a[i]
if yen >= v:
b[i] += 1
if yen == v:
h.add(str(b))
else:
buy(b, yen - v)
b[i] -= 1
buy([0, 0, 0], 5360)
for s in h: print(s)
a = (600, 580, 460)
m = min(a)
h = set()
def buy(b, yen):
if yen < m: return
for i in range(0, len(a)):
v = a[i]
if yen >= v:
b[i] += 1
if yen == v:
h.add(str(b))
else:
buy(b, yen - v)
b[i] -= 1
buy([0, 0, 0], 5360)
for s in h: print(s)
312デフォルトの名無しさん
2024/03/27(水) 23:55:15.74ID:qNf/D02g >>304
Haskell
[(a, b, c) | a <- [0..20], b <- [0..20], c <- [0..20], a * 460 + b * 580 + c * 600 == 5360]
output: [(0,2,7),(4,4,2)]
Haskell
[(a, b, c) | a <- [0..20], b <- [0..20], c <- [0..20], a * 460 + b * 580 + c * 600 == 5360]
output: [(0,2,7),(4,4,2)]
313デフォルトの名無しさん
2024/03/28(木) 00:00:41.99ID:0Zoa9Vsx 合計10個という条件忘れてた。
[(a, b, c) | a <- [0..20], b <- [0..20], c <- [0..20], a + b + c == 10, a * 460 + b * 580 + c * 600 == 5360]
output: [(4,4,2)]
[(a, b, c) | a <- [0..20], b <- [0..20], c <- [0..20], a + b + c == 10, a * 460 + b * 580 + c * 600 == 5360]
output: [(4,4,2)]
314デフォルトの名無しさん
2024/03/31(日) 11:57:53.31ID:enek7T1c 大幅に手直しした
特に前回数値が一部出てこない状態になっていたので色々と手動で最適化した
新しいアイディアを思いつかない限りはシングルスレッドでの限界に近いと思う
n m 301-1 303 2pass 2pass'
5k 5 0.1s 0.4s 0.1s 0.1s
25k 5 2.5s 11.1s 2.3s* 1.7s
100k 5 49.3s 3m26s 38.9s 27.7s
1M* 6 2h50m 6h43m 1h11m 48m10s
2M* 6 17h06m 28h27m 5h47m 3h13m
Max* 6 35h51m 51h23m 11h09m 5h47m
*前回>>309 2pass n=25kの再計測値
*n=1Mは部分ループ500k<=r<510kから100倍
*n=2Mは部分ループ500k<=r<505kから400倍
*Max:=2642245は3乗がUINT64に収まる最大
*n=Maxは部分ループ500k<=r<500k+3785から2642245/3785倍
ヒント含みの数値がこちら
n D1 D2 D3 = 5000 5001 5003 5009
false_positive = 23 / 5001 = 0.46%
total_t_pass1 = 64.220 ms 2.568 ns/iter
total_t_pass2 = 0.044 ms 0.381 ns/iter
real 0m0.097s
特に前回数値が一部出てこない状態になっていたので色々と手動で最適化した
新しいアイディアを思いつかない限りはシングルスレッドでの限界に近いと思う
n m 301-1 303 2pass 2pass'
5k 5 0.1s 0.4s 0.1s 0.1s
25k 5 2.5s 11.1s 2.3s* 1.7s
100k 5 49.3s 3m26s 38.9s 27.7s
1M* 6 2h50m 6h43m 1h11m 48m10s
2M* 6 17h06m 28h27m 5h47m 3h13m
Max* 6 35h51m 51h23m 11h09m 5h47m
*前回>>309 2pass n=25kの再計測値
*n=1Mは部分ループ500k<=r<510kから100倍
*n=2Mは部分ループ500k<=r<505kから400倍
*Max:=2642245は3乗がUINT64に収まる最大
*n=Maxは部分ループ500k<=r<500k+3785から2642245/3785倍
ヒント含みの数値がこちら
n D1 D2 D3 = 5000 5001 5003 5009
false_positive = 23 / 5001 = 0.46%
total_t_pass1 = 64.220 ms 2.568 ns/iter
total_t_pass2 = 0.044 ms 0.381 ns/iter
real 0m0.097s
315デフォルトの名無しさん
2024/03/31(日) 11:58:50.32ID:enek7T1c n D1 D2 D3 = 25000 25003 25005 25006
false_positive = 171 / 25003 = 0.68%
total_t_pass1 = 1654.681 ms 2.647 ns/iter
total_t_pass2 = 1.407 ms 0.329 ns/iter
real 0m1.709s
false_positive = 2211 / 100005 = 2.21%
total_t_pass1 = 27338.298 ms 2.734 ns/iter
total_t_pass2 = 78.402 ms 0.355 ns/iter
real 0m27.692s
n D1 D2 D3 = 1000000 1000002 1000009 1000015
false_positive = 18 / 10000 = 0.18%
total_t_pass1 = 28674.338 ms 2.867 ns/iter
total_t_pass2 = 5.642 ms 0.313 ns/iter
real 0m28.897s
n D1 D2 D3 = 2000000 2000003 2000013 2000015
false_positive = 13 / 5000 = 0.26%
total_t_pass1 = 28777.424 ms 2.878 ns/iter
total_t_pass2 = 8.620 ms 0.332 ns/iter
real 0m29.015s
n D1 D2 D3 = 2642245 2642246 2642253 2642258
false_positive = 315 / 3785 = 8.32%
total_t_pass1 = 29210.857 ms 2.921 ns/iter
total_t_pass2 = 336.864 ms 0.405 ns/iter
real 0m29.800s
false_positive = 171 / 25003 = 0.68%
total_t_pass1 = 1654.681 ms 2.647 ns/iter
total_t_pass2 = 1.407 ms 0.329 ns/iter
real 0m1.709s
false_positive = 2211 / 100005 = 2.21%
total_t_pass1 = 27338.298 ms 2.734 ns/iter
total_t_pass2 = 78.402 ms 0.355 ns/iter
real 0m27.692s
n D1 D2 D3 = 1000000 1000002 1000009 1000015
false_positive = 18 / 10000 = 0.18%
total_t_pass1 = 28674.338 ms 2.867 ns/iter
total_t_pass2 = 5.642 ms 0.313 ns/iter
real 0m28.897s
n D1 D2 D3 = 2000000 2000003 2000013 2000015
false_positive = 13 / 5000 = 0.26%
total_t_pass1 = 28777.424 ms 2.878 ns/iter
total_t_pass2 = 8.620 ms 0.332 ns/iter
real 0m29.015s
n D1 D2 D3 = 2642245 2642246 2642253 2642258
false_positive = 315 / 3785 = 8.32%
total_t_pass1 = 29210.857 ms 2.921 ns/iter
total_t_pass2 = 336.864 ms 0.405 ns/iter
real 0m29.800s
316デフォルトの名無しさん
2024/03/31(日) 22:30:39.09ID:4FIGx2uN >>304
ぶっちゃけ、他の言語の人と同じっぽくないので心配なんだが…。
自分なりにHaskellで全探索じゃないバージョン書いてみた。
Haskell
[(a, b, c) | a <- [0..10], b <- [0..10 - a], c <- [0..10 - (a + b)], a * 460 + b * 580 + c * 600 == 5360, a + b + c == 10]
答えは同じ[(4,4,2)]。
ぶっちゃけ、他の言語の人と同じっぽくないので心配なんだが…。
自分なりにHaskellで全探索じゃないバージョン書いてみた。
Haskell
[(a, b, c) | a <- [0..10], b <- [0..10 - a], c <- [0..10 - (a + b)], a * 460 + b * 580 + c * 600 == 5360, a + b + c == 10]
答えは同じ[(4,4,2)]。
317デフォルトの名無しさん
2024/04/01(月) 04:52:23.91ID:iTC1bSa8 少し一般化して、N個の商品があり、i番目の商品はA_i円です
合計M個購入し、価格の合計がS円であるような購入の仕方を998244353で割った余りを求めてください
だとO(N M S)より小さい計算量で解けるのかな
合計M個購入し、価格の合計がS円であるような購入の仕方を998244353で割った余りを求めてください
だとO(N M S)より小さい計算量で解けるのかな
318デフォルトの名無しさん
2024/04/01(月) 16:50:08.47ID:0Kkx57P3 2個、4個、8個…みたいにメモ化すればMはlogMにできるかもしれんね
空間がlogM倍されそうだが
空間がlogM倍されそうだが
319デフォルトの名無しさん
2024/04/13(土) 11:43:17.27ID:itq2kjOw ヘロンの公式を実装せよ
使用言語:C
使用言語:C
32017
2024/04/13(土) 16:57:10.76ID:SxW/5mRR >>319
https://paiza.io/projects/_ZdSzHtV9YdEzV-oOySQWQ
Wikipedia でヘロンの公式を調べてそのまま実装しただけで、ほとんど何も考えてない。
https://paiza.io/projects/_ZdSzHtV9YdEzV-oOySQWQ
Wikipedia でヘロンの公式を調べてそのまま実装しただけで、ほとんど何も考えてない。
321デフォルトの名無しさん
2024/04/13(土) 23:01:22.75ID:wFZkrOeZ >>319
https://ideone.com/YCi6qe
ヘロンが作ったもう1つの式である平方根を加算と除算の繰り返しで求める式も使用。
sqrt関数を呼び出すより実行形式ファイルサイズがほんの少しだけ小さくなる。
https://ideone.com/YCi6qe
ヘロンが作ったもう1つの式である平方根を加算と除算の繰り返しで求める式も使用。
sqrt関数を呼び出すより実行形式ファイルサイズがほんの少しだけ小さくなる。
322デフォルトの名無しさん
2024/04/14(日) 00:59:32.83ID:ujzJ2+0Y323デフォルトの名無しさん
2024/04/14(日) 18:34:21.49ID:MHeAinLP 解答例
#include <stdio.h>
#include <math.h>
void heron(double, double, double);
int main(void)
{
double a, b, c;
printf("3辺a, b, cを入力せよ ");
scanf("%lf,%lf,%lf", &a, &b, &c);
heron(a, b, c);
}
void heron(double x, double y, double z) // heronの定義
{
double s, t;
s = (x+y+z)*0.5;
t = s*(s-x)*(s-y)*(s-z);
printf("3角形の面積は S=%g\n", sqrt(t));
return;
}
#include <stdio.h>
#include <math.h>
void heron(double, double, double);
int main(void)
{
double a, b, c;
printf("3辺a, b, cを入力せよ ");
scanf("%lf,%lf,%lf", &a, &b, &c);
heron(a, b, c);
}
void heron(double x, double y, double z) // heronの定義
{
double s, t;
s = (x+y+z)*0.5;
t = s*(s-x)*(s-y)*(s-z);
printf("3角形の面積は S=%g\n", sqrt(t));
return;
}
324デフォルトの名無しさん
2024/04/14(日) 18:36:52.16ID:MHeAinLP >>321 さすがですね
325デフォルトの名無しさん
2024/04/15(月) 21:01:04.41ID:dSNEYg5r >>322
p < 0 のとき(= 三角形を作れない場合)は浮動小数点数の特性に関係なく無限ループになる。
sqrt(p) と同様にNANを返すには、if (p < 0) return 0 / (p - p); を追加すれば良い。
p > 0 のときは無限ループにならないはず。以下が検証プログラム。
https://ideone.com/mzemEM
x = sqrt(p), y = p / x とすると、浮動小数点数の特性により x == y とならない場合は存在する。
このとき、xとyの仮数部を整数と見なした値(以降では「仮数整数」と呼ぶ)の差は1なので、
z = (x + y) / 2 はxとyのうち仮数整数が偶数の方に一致する。zを新たなxとして代入しyとzを
再計算すれば、今度はxの仮数整数が偶数なのでzはxに必ず一致し、>>321の収束判定条件が成立する。
具体例で見ると、p = 2 のときはxの仮数整数が奇数なので x != z となるが、zを新たなxとして代入し
再計算すれば x == z が成立する。桁上がりが起こる p = 3.9999999999999996 のときも、同様に
再計算で x == z が成立する。p = 3 のときはxの仮数整数が偶数なので x == z が成立し再計算は不要。
p < 0 のとき(= 三角形を作れない場合)は浮動小数点数の特性に関係なく無限ループになる。
sqrt(p) と同様にNANを返すには、if (p < 0) return 0 / (p - p); を追加すれば良い。
p > 0 のときは無限ループにならないはず。以下が検証プログラム。
https://ideone.com/mzemEM
x = sqrt(p), y = p / x とすると、浮動小数点数の特性により x == y とならない場合は存在する。
このとき、xとyの仮数部を整数と見なした値(以降では「仮数整数」と呼ぶ)の差は1なので、
z = (x + y) / 2 はxとyのうち仮数整数が偶数の方に一致する。zを新たなxとして代入しyとzを
再計算すれば、今度はxの仮数整数が偶数なのでzはxに必ず一致し、>>321の収束判定条件が成立する。
具体例で見ると、p = 2 のときはxの仮数整数が奇数なので x != z となるが、zを新たなxとして代入し
再計算すれば x == z が成立する。桁上がりが起こる p = 3.9999999999999996 のときも、同様に
再計算で x == z が成立する。p = 3 のときはxの仮数整数が偶数なので x == z が成立し再計算は不要。
326デフォルトの名無しさん
2024/04/15(月) 22:06:46.39ID:MxMoolaJ327デフォルトの名無しさん
2024/04/17(水) 05:47:35.77ID:F2fqxIYT ヘロンの公式はそのままだと、数値計算での安定性が良くないらしいぞ
解決策は、Wikipediaの英語版の方に…
tps://en.wikipedia.org/wiki/Heron%27s_formula#Numerical_stability
解決策は、Wikipediaの英語版の方に…
tps://en.wikipedia.org/wiki/Heron%27s_formula#Numerical_stability
328327
2024/04/17(水) 05:52:23.77ID:F2fqxIYT そしてこんなとこでもカハンせんせーの名前がが
329デフォルトの名無しさん
2024/04/17(水) 16:28:33.14ID:7JRzlbtx の長さ
この公式で計算される面積は、理論的には正しい値です。しかし、実際には、以下の理由で誤差が生じる可能性があります。
数値計算の誤差: 計算機で数値を扱う場合、有限桁しか扱えないため、丸め誤差が生じます。特に、辺の長さの値が大きく異なる三角形の場合、この誤差が顕著になります。
四捨五入誤差: 計算結果を小数点以下n桁まで表示する場合、n桁目以降の数字を切り捨てます。この四捨五入誤差も、面積の誤差に影響を与えます。
by Gemini
この公式で計算される面積は、理論的には正しい値です。しかし、実際には、以下の理由で誤差が生じる可能性があります。
数値計算の誤差: 計算機で数値を扱う場合、有限桁しか扱えないため、丸め誤差が生じます。特に、辺の長さの値が大きく異なる三角形の場合、この誤差が顕著になります。
四捨五入誤差: 計算結果を小数点以下n桁まで表示する場合、n桁目以降の数字を切り捨てます。この四捨五入誤差も、面積の誤差に影響を与えます。
by Gemini
330デフォルトの名無しさん
2024/04/17(水) 23:38:33.35ID:k4k/eSae >>327に載っている参考文献
William M. Kahan, ‘Miscalculating Area and Angles of a Needle-like Triangle’
http://www.cs.berkeley.edu/~wkahan/Triangle.pdf
のTable 1の問題がパソコン等でのC++プログラムでも再現されるか試してみた。
https://ideone.com/r4toUS
Table 1とは違い、Accurate Δが概ね正確な場合にHeron's Δ'が大きく懸け離れた不正確な値に
なってしまうことはなく、ほぼ同じ値になり差はごく僅かしかない。Table 1のような不安定性は
Table 1の計算に使われたプログラマブル関数電卓に特有の問題で、パソコン等のプログラムでは
再現されない。(パソコン等のdoubleの方が精度が高いので当然と言えば当然だが)
一方、(a, b, c) = (5278.64055, 94721.35941, 99999.99996)の場合は、逆にHeron's Δ' = 0が
正確なのにAccurate Δ = 9.53674324543714が大きく懸け離れた不正確な値になってしまう
重大な欠点がある。これは、Accurate Δの式の根号内の第2因数c - (a - b)が正確には0なのに
3.63797880709171e-12と計算されてしまい、この誤差が他の因数との乗算により増幅されるから。
Heron's Δ'の式の根号内の第4因数s - cは0と計算されるので問題ない。
double向けの入力値(a, b, c) = (31622.77777777662, 0.000000000023, 31622.77777777661)を
作れば、Heron's Δ' = 2.30085990753844e-07, Accurate Δ = 3.20111707955507e-07となり、
相対差は確かに大きくなるが、200ビットで計算したほぼ正確な値3.27490470056059e-07から
見れば両方とも不正確だから、Accurate Δの利点はない。
だから、パソコン等のプログラムでは改良版の式を使う必要がないどころか使うべきではなく、
ヘロンの公式をそのまま使う方が良い。
William M. Kahan, ‘Miscalculating Area and Angles of a Needle-like Triangle’
http://www.cs.berkeley.edu/~wkahan/Triangle.pdf
のTable 1の問題がパソコン等でのC++プログラムでも再現されるか試してみた。
https://ideone.com/r4toUS
Table 1とは違い、Accurate Δが概ね正確な場合にHeron's Δ'が大きく懸け離れた不正確な値に
なってしまうことはなく、ほぼ同じ値になり差はごく僅かしかない。Table 1のような不安定性は
Table 1の計算に使われたプログラマブル関数電卓に特有の問題で、パソコン等のプログラムでは
再現されない。(パソコン等のdoubleの方が精度が高いので当然と言えば当然だが)
一方、(a, b, c) = (5278.64055, 94721.35941, 99999.99996)の場合は、逆にHeron's Δ' = 0が
正確なのにAccurate Δ = 9.53674324543714が大きく懸け離れた不正確な値になってしまう
重大な欠点がある。これは、Accurate Δの式の根号内の第2因数c - (a - b)が正確には0なのに
3.63797880709171e-12と計算されてしまい、この誤差が他の因数との乗算により増幅されるから。
Heron's Δ'の式の根号内の第4因数s - cは0と計算されるので問題ない。
double向けの入力値(a, b, c) = (31622.77777777662, 0.000000000023, 31622.77777777661)を
作れば、Heron's Δ' = 2.30085990753844e-07, Accurate Δ = 3.20111707955507e-07となり、
相対差は確かに大きくなるが、200ビットで計算したほぼ正確な値3.27490470056059e-07から
見れば両方とも不正確だから、Accurate Δの利点はない。
だから、パソコン等のプログラムでは改良版の式を使う必要がないどころか使うべきではなく、
ヘロンの公式をそのまま使う方が良い。
331デフォルトの名無しさん
2024/04/18(木) 07:16:50.63ID:8T8m8Yde >(a, b, c) = (5278.64055, 94721.35941, 99999.99996)
>c - (a - b)が正確には0なのに3.63797880709171e-12と計算されてしまい
この例に限らず、たいていの場合a,b,cはdoubleでexactに格納されて無くて
この例では「c - (a - b)が正確には0」なのをチョイスしただけでは?
>c - (a - b)が正確には0なのに3.63797880709171e-12と計算されてしまい
この例に限らず、たいていの場合a,b,cはdoubleでexactに格納されて無くて
この例では「c - (a - b)が正確には0」なのをチョイスしただけでは?
332デフォルトの名無しさん
2024/04/18(木) 07:30:10.21ID:PYBA8OB3 パソロジカルな三角形をパラメトライズして面積を積分する検証はどう?
数式計算での正確な値
Heronで面積計算した時の数値積分
Accurateで面積計算した時の数値積分
を比べるのがフェアかなぁと
数式計算での正確な値
Heronで面積計算した時の数値積分
Accurateで面積計算した時の数値積分
を比べるのがフェアかなぁと
333デフォルトの名無しさん
2024/04/18(木) 07:34:09.77ID:PYBA8OB3 > 200ビットで計算したほぼ正確な値3.27490470056059e-07
この例だけ見るとAccurate Δの方が優れているように見えるので
>>331の様なチェリーピックはどちらの計算式でも出来るので平均的に近似が近い方が精度的に優れているかと
この例だけ見るとAccurate Δの方が優れているように見えるので
>>331の様なチェリーピックはどちらの計算式でも出来るので平均的に近似が近い方が精度的に優れているかと
334デフォルトの名無しさん
2024/04/18(木) 22:41:59.70ID:y7NBfn6/ >>331
その通り。そして、(a, b, c) = (10000.1, 10000.2, 20000.3)とすれば、正しい面積は0なのに
Heron's Δ' = 2.69745899635295とAccurate Δ = 1.34872949817647は両方とも大間違いになる。
この場合のようにHeron's Δ'での問題がAccurate Δで改善されないだけでなく、>>331の引用の
場合のようにHeron's Δ'では結果的に問題ないのにAccurate Δでは新たな問題が生じてしまうのは、
参考文献の11ページで述べられた
An algorithm stood convicted of numerical instability if it could be replaced by
a new algorithm at least about as fast and accurate as the old for all data,
and good for all data for which the old algorithm was bad.
すべてのデータに対して旧アルゴリズムと少なくとも同じくらい高速かつ正確であり、
かつ旧アルゴリズムが悪くなるすべてのデータに対して良くなる新アルゴリズムによって
置き換えることができるとしたら、旧アルゴリズムは数値的に不安定と判定される。
という判定条件を満たさないから、Accurate Δは改良版としての適性を欠く。
>>333
その例では有効桁数がHeron's Δ'は0桁、Accurate Δは1桁しかなく、どちらの品質も絶対的に
劣悪で、それらの間の相対的な優劣に大した意味はない。
そもそも針のように異様に細長い三角形が重箱の隅をつつくような話で、普通はそんな場合は
想定しなくても良く、ヘロンの公式で充分。そこを敢えてつつくなら、ヘロンの公式だけでなく
改良式もぼろが出てしまうだけ。
その通り。そして、(a, b, c) = (10000.1, 10000.2, 20000.3)とすれば、正しい面積は0なのに
Heron's Δ' = 2.69745899635295とAccurate Δ = 1.34872949817647は両方とも大間違いになる。
この場合のようにHeron's Δ'での問題がAccurate Δで改善されないだけでなく、>>331の引用の
場合のようにHeron's Δ'では結果的に問題ないのにAccurate Δでは新たな問題が生じてしまうのは、
参考文献の11ページで述べられた
An algorithm stood convicted of numerical instability if it could be replaced by
a new algorithm at least about as fast and accurate as the old for all data,
and good for all data for which the old algorithm was bad.
すべてのデータに対して旧アルゴリズムと少なくとも同じくらい高速かつ正確であり、
かつ旧アルゴリズムが悪くなるすべてのデータに対して良くなる新アルゴリズムによって
置き換えることができるとしたら、旧アルゴリズムは数値的に不安定と判定される。
という判定条件を満たさないから、Accurate Δは改良版としての適性を欠く。
>>333
その例では有効桁数がHeron's Δ'は0桁、Accurate Δは1桁しかなく、どちらの品質も絶対的に
劣悪で、それらの間の相対的な優劣に大した意味はない。
そもそも針のように異様に細長い三角形が重箱の隅をつつくような話で、普通はそんな場合は
想定しなくても良く、ヘロンの公式で充分。そこを敢えてつつくなら、ヘロンの公式だけでなく
改良式もぼろが出てしまうだけ。
335デフォルトの名無しさん
2024/04/18(木) 22:55:38.47ID:n9UdHBZN 総合すると有効桁じゃなくて精度が2桁良いし実装上は大差ないから改良版を使う、と言う方が自然では?
336デフォルトの名無しさん
2024/05/01(水) 12:56:47.83ID:nIC3qyB/ スレ落ちそうなのであげ
337デフォルトの名無しさん
2024/05/01(水) 15:39:17.16ID:hqp8cDbc >>336
嵐を呼び込むために・・・
嵐を呼び込むために・・・
338デフォルトの名無しさん
2024/05/01(水) 22:59:10.72ID:4hNncNW1 何でこんなに過疎化しちゃったのか。前に頻繁に出題していた人がいなくなったのか。
339デフォルトの名無しさん
2024/05/02(木) 10:32:38.87ID:ijoO2C2L お題を出してみてください
340デフォルトの名無しさん
2024/05/02(木) 16:59:52.63ID:DPVqLIsI341デフォルトの名無しさん
2024/05/02(木) 17:21:22.07ID:pg1ymc2D34217
2024/05/02(木) 18:44:04.16ID:LxBZq7I4 >>340
なるほど。それをやるか。
なるほど。それをやるか。
34317
2024/05/14(火) 05:34:03.62ID:ou5vbzLn じゃあ10年前のこのお題(URLを書くとNGになるようなので書かない)。
プログラミングのお題スレ Part4
115 :デフォルトの名無しさん:2014/06/21(土) 18:36:45.72 ID:/fMJIWig.net
お題:文字列Aを1回以上繰り返した文字列Bが与えられたとき
文字列Aを求める。ただしAの候補が複数ある場合は最短のものとする。
例
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa -> a
123412312341231234123123412312341231234123 -> 1234123
oxoxoxoxoxoxoxoxxoxoxoxoxoxoxoxoxx -> oxoxoxoxoxoxoxoxx
プログラミングのお題スレ Part4
115 :デフォルトの名無しさん:2014/06/21(土) 18:36:45.72 ID:/fMJIWig.net
お題:文字列Aを1回以上繰り返した文字列Bが与えられたとき
文字列Aを求める。ただしAの候補が複数ある場合は最短のものとする。
例
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa -> a
123412312341231234123123412312341231234123 -> 1234123
oxoxoxoxoxoxoxoxxoxoxoxoxoxoxoxoxx -> oxoxoxoxoxoxoxoxx
レスを投稿する
ニュース
- 【中国外務省】日中関係悪化は高市氏に責任と名指しで非難… ★5 [BFU★]
- 【インバウンド】中国からの“渡航自粛”…ツアー1000人分の直前キャンセル「キャンセル料は免除してくれ」 ことしいっぱいキャンセルに [1ゲットロボ★]
- XやChatGPTで広範囲の通信障害 投稿や閲覧できず [蚤の市★]
- 「国民の憤りを引き起こした」中国側“高市首相発言の撤回改めて要求” [どどん★]
- 【サッカー】日本代表、ボリビアに3発快勝 森保監督通算100試合目を飾る…鎌田、町野、中村がゴール [久太郎★]
- 【ローソン】ロゴの「L」で誤解生んだコーヒーカップ、デザイン変更へ 在庫使い切る3か月後にリニューアル [ぐれ★]
- 「遺体、安倍、会いたい」👈逆から読んでみて [175344491]
- 【悲報】SANA、発言撤回拒否 [769931615]
- ジャーナリストがテレビで解説「台湾問題は高市総理から言ったのではなく、立憲民主が日本の対応可能能力を暴こうとしたから」 [359572271]
- 【悲報】トランプ聖帝「高市…さん…でしたっけ?」 [878970802]
- 嫌儲、復活 [377388547]
- 山上、死刑回避し減刑か 山上母の供述で一気に酌量ムードへ [804169411]
