What is "mathematics in programming?"
Some well-known facts in mathematics are difficult to prove using a computer.
For example, the Leibniz series
1 - 1/3 + 1/5 - 1/7 + ...
is exactly equal to π/4, but calculating this series directly is impossible because it requires infinite computation.
However, from the theorems of analysis, this equality can be shown. Thus, if all these theorems are formulated in terms of logic symbols, the proof is reduced to a finite algorithm.
Some might say that a "proof assistant" or "theorem prover" would make this possible.
However, the language of proof assistants is too complicated to describe proofs of non-fundamental theorems, so proof assistants are used only to check proofs that have already been solved.
This is far from doing mathematics.
My question is where do mathematical ideas come from and whether programming can help yield them?
How to do Math in programming
2024/03/21(木) 09:41:43.97ID:85WuJ+Bw
2024/03/21(木) 10:47:44.36ID:8aAFTiSh
fuck your asshole
2024/03/21(木) 11:56:07.97ID:etpddAIY
Theorem Proving in Lean 4 日本語訳
https://aconite-ac.github.io/theorem_proving_in_lean4_ja/title_page.html
定理証明なら、今はCoqよりこっちなんかな
https://aconite-ac.github.io/theorem_proving_in_lean4_ja/title_page.html
定理証明なら、今はCoqよりこっちなんかな
2024/03/21(木) 12:07:26.54ID:etpddAIY
依存型を使った定理証明入門
https://zenn.dev/blackenedgold/books/introduction-to-idris/viewer/theorem-prooving
定理証明の流れは
命題を型に変換する
型がnon-emptyであることを示す
なので、実行時に型チェックすれば動的型付け言語でも証明はできるわけか
ただ、全称型とか存在型とかをどうやって表すのかがわからない
https://zenn.dev/blackenedgold/books/introduction-to-idris/viewer/theorem-prooving
定理証明の流れは
命題を型に変換する
型がnon-emptyであることを示す
なので、実行時に型チェックすれば動的型付け言語でも証明はできるわけか
ただ、全称型とか存在型とかをどうやって表すのかがわからない
2024/03/21(木) 23:49:19.66ID:qInfXZgz
より直感的なシンタックスと、命題のインタフェースを簡単に変換できる機能がほしいな
2024/03/23(土) 09:58:52.52ID:vizf8omG
命題 → 型
偽 → ∅
not A → Hom(A, ∅)
真→ not ∅
AかつB → 直積A×B
AまたはB → 直和A⊕B
AならばB
= not A または B
= (not A)⊕B
= Hom(A, ∅)⊕B
~ Hom(A, B) ※ 真偽が一致する
偽 → ∅
not A → Hom(A, ∅)
真→ not ∅
AかつB → 直積A×B
AまたはB → 直和A⊕B
AならばB
= not A または B
= (not A)⊕B
= Hom(A, ∅)⊕B
~ Hom(A, B) ※ 真偽が一致する
2024/03/24(日) 22:31:53.90ID:XQMIeHSx
プログラムはバイト列にコンパイルされるから、すべてのプログラムは高々可算個になるのだが、なぜ非可算集合をふくむ論理を扱えるんだ?
2024/03/24(日) 23:10:41.69ID:p5jI7jhC
量化してるからだよ
2024/03/25(月) 00:03:34.00ID:q4vXpy6m
数学者だって、自分の専門分野の数学をすべて論理学と集合論の公理から演繹したわけじゃないだろう
すでに理解したことやよく知られた事実は認めて問題を解いているはずだ
そういう柔軟性がほしい
つまり、認めてもいい仮説はその場その場で手軽に導入できるような言語設計がいい
その上で、そこから機械的に導けることの証明や、定義から直接わかる具体例の計算などを半自動でしてほしい
もちろん、コンピュータにやらせる以上、曖昧さのない構文は必要だろうが
def continuous_at(f: Real -> Real, a: Dom(f)) = forall({e: Real | e > 0},
exists({d: Real | d > 0},
forall({x: Dom(f)},
implies(abs(x - a) < d, abs(f(x) - f(a)) < e)
)
)
)
これよりもさらに手短に、見た目ももっと見易く
すでに理解したことやよく知られた事実は認めて問題を解いているはずだ
そういう柔軟性がほしい
つまり、認めてもいい仮説はその場その場で手軽に導入できるような言語設計がいい
その上で、そこから機械的に導けることの証明や、定義から直接わかる具体例の計算などを半自動でしてほしい
もちろん、コンピュータにやらせる以上、曖昧さのない構文は必要だろうが
def continuous_at(f: Real -> Real, a: Dom(f)) = forall({e: Real | e > 0},
exists({d: Real | d > 0},
forall({x: Dom(f)},
implies(abs(x - a) < d, abs(f(x) - f(a)) < e)
)
)
)
これよりもさらに手短に、見た目ももっと見易く
2024/03/25(月) 01:17:03.24ID:YF7A8RJG
たとえば>>9のcomtinuous_atなんかも、一度書いたはいいけど実際に使うとなると、使うたびに、fの定義域が実数全体じゃない場合みたいな微妙な調整が必要になるんだよね
人間が考えたら時間がかかるような部分をコンピュータに助けてほしいのに、どうしても「知りたいのはそこじゃない」って部分に時間をかけなきゃいけない
人間が考えたら時間がかかるような部分をコンピュータに助けてほしいのに、どうしても「知りたいのはそこじゃない」って部分に時間をかけなきゃいけない
レスを投稿する
ニュース
- 「中国人の訪日熱は冷めた」 人気旅行先から日本外れる 14日で自粛呼びかけ1カ月 ★3 [蚤の市★]
- 高市首相の答弁書に「台湾有事答えない」と明記 存立危機発言当時 ★8 [蚤の市★]
- 「1800万円の売り上げゼロに…」中国インバウンドに特化の宿の今 ★2 [蚤の市★]
- 「1800万円の売り上げゼロに…」中国インバウンドに特化の宿の今 ★3 [蚤の市★]
- 最新版Z級クソ映画ランキングが決定! [牛丼★]
- 公用車カーナビのNHK受信料「全額免除を」 千葉市議会、国に制度創設求める意見書可決 [少考さん★]
- どこだ?強ええええバキぼんやは????
- ( ´・ω・` )どいてもらえます?
- みんな?🥺
- SEXって陸上競技に入る?
- 【埼玉】34歳無職、置き配📦を盗みまくる!その数、400点!😱 [718678614]
- アラフォーおじさん、最近尿意で起きる
