>>381 は想像なんであってるかわからんがw

SVMはなるべく二つのクラスの距離(マージン)を広く取れるような境界を選ぶ性質がある
ソフトSVMは多少誤差があってもマージンを広く取る方を優先する
5次元の場合、SVMは誤差が大きい代わりにマージンが広い境界を見つけることができたのではないかということ
5次元モデルの方が汎化性能は高いかもよ
誤差とマージンのバランスはパラメータCで調整できる